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A vertical score scale is needed to measure growth across multiple tests in terms of
absolute changes in magnitude. Since the warrant for subsequent growth interpre-
tations depends upon the assumption that the scale has interval properties, the vali-
dation of a vertical scale would seem to require methods for distinguishing interval
scales from ordinal scales. In taking up this issue, two different perspectives on ed-
ucational measurement are contrasted: a metaphorical perspective and a classical
perspective. Although the metaphorical perspective is more predominant, at present
it provides no objective methods whereby the properties of a vertical scale can be
validated. In contrast, when taking a classical perspective, the axioms of additive
conjoint measurement can be used to test the hypothesis that the latent variable
underlying a vertical scale is quantitative (supporting ratio or interval properties)
rather than merely qualitative (supporting ordinal or nominal properties). The ap-
plication of such an approach is illustrated with both a hypothetical example and
by drawing upon recent research that has been conducted on the Lexile scale for
reading comprehension.

Intuitively, the concept of growth does not seem terribly complicated. When I was
a child I used to visit my grandmother in Austria once a year during the summer.
Upon seeing me, she would invariably exclaim “Look how much you have grown!”
And so we would. She would march me over to the designated spot in her hallway
and I would stand straight while she marked my height against the wall. Then we
would compare the most recent mark to the mark that had been left the summer
before using a ruler. At that point my grandmother’s qualitative observation could be
quantified with respect to the number of centimeters I had grown over a one year time
span. This little ritual captures what most people have in mind when they speak of
“measuring growth.” It begins with a qualitative assessment over at least two points
in time (“you look taller to me”), and it becomes measurement after a magnitude
can be established relative to an agreed upon standard unit (“you have grown four
centimeters since I last saw you”).

Where complications arise is in the shift from measuring growth in height to
measuring growth in knowledge, skills and abilities (i.e., learning). It might stand to
reason that the latter activity should involve the same basic elements as the former:
assessments that have been made at two points in time through some standardized
procedure and the use of a common scale to transform qualitative observations
into quantitative magnitudes. When measuring what students have learned from
grade to grade while in school, if there is a psychometric analog to the ruler then it
would appear to be the vertical1 score scale. For example, according to the technical
manual that accompanies CTB-McGraw Hill’s TerraNova test battery, the vertical
scale “can be viewed as a developmental continuum . . . scale scores are units of
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Figure 1. Two rulers used to
measure length.

a single, equal-interval scale applied across all levels of TerraNova regardless of
grade or time of testing” (CTB-McGraw Hill, 2001, p. 322). When invoking an
argument-based approach to test validation (Kane, 2006), such a claim would appear
to be a central warrant that would need to be supported empirically. This is because
the purpose of a vertical scale is to facilitate the measurement of growth in student
learning. This growth is to be expressed in terms of absolute changes in magnitude.
If the same growth magnitudes have different interpretations as a function of a
student’s starting point, this threatens the validity of intended test use. Hence it
follows that a robust validity argument in support of vertically scaled tests would
require evidence that the resulting scale has equal interval properties.

When one has a physical referent available, it often is easy to show that the distinc-
tion between an interval and noninterval scale is important. Consider the following
example to illustrate the point: According to the National Center for Health Statis-
tics, the height of an American adult male is, on average, 5.4 inches greater than the
height of an American adult female. In 2009, while teaching a doctoral seminar in
a class with seven female and five male students, I decided to find out whether the
average difference in height among the males and females in this class was close
to 5.4. To accomplish this, I created two different measuring sticks illustrated in
Figure 1.

The reader will note that while both measuring sticks have the same total number
of units (12), only in stick A do the units represent a standard sequence (in this ex-
ample, inches). The first stick can be used to measure differences in length in terms
of magnitudes that are intrinsically meaningful because any given object is mea-
sured as the ratio of that object’s length to the designated standard unit. So using
distinctions in scale properties first introduced by Stevens (1946), stick A represents
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a ratio scale. When differences are taken between two measures based on a ratio
scale, the numbers that result will have interval properties: a difference of X units
will have the same intrinsic meaning no matter which two measures were the basis
for that difference. In contrast to stick A, stick B can only be used to rank objects
according to their length because the units on stick B were purposefully chosen so
that they would have no consistent meaning. Thus, the numbers that result from ap-
plication of stick B represent an ordinal scale. The differences between two objects
with lengths measured using stick B are best not interpreted as having equal inter-
val properties, as became readily apparent when students were asked to measure one
another with each stick. For the 12 students combined, the use of sticks A and B
resulted in average measurements of 68.2 and 70.6 units, respectively. When aver-
age height differences were measured using stick A, the result was 5.5—very close to
the value reported by the National Center for Health Statistics. When measured using
the ordinal stick, the result was 21.2. When the differences were expressed in effect
size units after dividing each difference by the overall standard deviation (SD) in
heights as measured by each stick, use of the ordinal scale (stick B) relative to the in-
terval scale (stick A) inflated the difference in male and female heights by .4 SDs (1.9
vs. 1.4). As this example shows, in the physical sciences, the practical consequence
of performing arithmetic computations on a numeric scale with ordinal properties
relative to one with ratio or interval properties is significant. Is it less so in the social
sciences? When a vertical score scale is used to communicate the growth of a stu-
dent from Grade 3 to Grade 4, how does one know whether the difference observed
is more akin to the 5.4 found using stick A or the 21.2 found using stick B?

This was the question recently posed by Ballou (2009) in the context of value-
added statistical models. Although not all value-added models require the availabil-
ity of tests on a vertical scale, they do implicitly assume that test scores have equal-
interval properties. In reviewing the psychometric research literature on this issue,
Ballou pointed to many conflicting answers: “There are some psychometricians who
consider theta to be intervally scaled, others who think it is ordinal, still others who
regard the choice of scale as arbitrary, even if it is an interval scale, and finally
some who are unsure what it is. Clearly it is disconcerting to find this divergence
of views . . . Is the IRT [Item Response Theory] ability trait measured on an interval
scale or not? Indeed, how does one tell? (Ballou, 2009, pp. 356)” This question can
be addressed only if one is willing to wrestle with some profound philosophical is-
sues regarding the meaning of educational measurement. In doing so, one quickly
encounters a critique of modern psychometrics in the form of a series of publications
over the past decade by Michell (1997, 2000, 2004, 2008a, 2008b). In short, Michell
has argued that the field of psychometrics represents a “pathological science” be-
cause an assumption is routinely made about the quantitative nature of what is being
measured without putting this assumption to empirical test—or even recognizing that
the assumption has been made at all.

A first purpose of this paper is to demonstrate a methodological approach, rooted
in a classical conception of measurement, that could be applied empirically to val-
idate (or invalidate) the use of vertically scaled tests to measure growth. It is in
the context of vertical scaling that the distinction between quantitative and qual-
itative, ordinal and interval, can be expected to have the most dramatic practical
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consequences, and as noted above, establishing this distinction is critical to any seri-
ous attempt at test validation. This is because in contrast to the score scales created
for tests administered at a single point in time, which often are used only to rank
students or to make predictions about a student’s likelihood of answering a given
item correctly, the raison d’être of the vertical score scale is to measure growth in
student learning in terms of changes in magnitude. A second purpose of this paper
is to compare a classically oriented approach to establishing a vertical scale with the
more pragmatic approach typical in mainstream psychometrics (at least as practiced
in the American testing industry). Under this approach, the term measurement is un-
derstood and used metaphorically, and in this sense, the premise of Michell’s critique
may not apply. But embracing the “measurement as metaphor” perspective can lead
to scenarios in which it becomes difficult, if not impossible, to establish whether one
vertical scale is in some sense “better” than another. I argue that irrespective of one’s
(perhaps tacit) philosophical orientation toward educational measurement, the sci-
ence behind vertical scaling will improve only to the extent that explicit criteria can
be established for the validation activities that accompany and follow the creation of
a vertical scale.

Early Arguments Over Vertical Scale Interpretations

Confusion over the interpretability of scores deriving from a vertical scale can be
traced back to an invited address given by H. D. Hoover at the annual meeting of the
American Educational Research Association (Hoover, 1984a, 1984b). Hoover’s ad-
dress was intended primarily as a defense of the use of the grade-equivalent metric to
represent trends in growth across grades, a practice that had a long-standing history
associated most notably with the Iowa Tests of Basic Skills (see Peterson, Kolen, &
Hoover, 1989 for a detailed description of “Hieronymous” scaling). In the process,
Hoover had taken issue with the claim that the scale scores resulting from the applica-
tion of Thurstone’s method of absolute scaling (Thurstone, 1925), or the application
of the more recently implemented methods based on the use of item response the-
ory (IRT; Lord & Novick, 1968), were somehow preferable to grade equivalents as
a theoretical basis for subsequent arithmetic computations because they possessed
interval properties that grade equivalents did not. Hoover contrasted the patterns of
growth for three vertical scales created in the domain of English language arts: two
that had been created using the Thurstone approach and one that had been created
using the 3-parameter logistic model (3PLM; Birnbaum, 1968). In all three cases,
Hoover was able to point to published claims by the test developers that the resulting
scales were “equal-interval” (Hoover, 1984a, pp. 9–10). Yet when Hoover examined
the grade-to-grade growth patterns in reading comprehension implied for students
at the 10th, 50th, and 90th percentiles on each test, he found that the results led to
conflicting interpretations about student development. On the two Thurstone-based
scales, there was evidence of rapid growth in the elementary school grades (2–5),
slower growth in the middle school grades (6–8), and then more rapid growth again
in the high school grades (9–12). Furthermore, on both scales students at the 90th
percentile of the score distribution in a previous grade appeared to grow significantly
faster than students at the 10th percentile in the previous grade. In contrast, for the
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scale created using the 3PLM, after the elementary grades there was a dramatic de-
celeration of growth for all students with the apparent exception of those at the 10th
percentile, for whom growth continued at a rapid clip up until high school. In short,
when using the Thurstone approach, the variability in scores increased over time as
higher-achieving students appeared to acquire new skills and master new content
more rapidly than lower-achieving students. According to the more recently imple-
mented IRT approach, it was the opposite, with the variability in scores decreasing
over time as lower-achieving students appeared to catch up to their higher-achieving
peers.

Hoover was not alone in his skepticism about the interval properties of vertical
score scales (see Camilli, Yamamoto, & Wang, 1993; Clemans, 1993; Phillips &
Clarizio, 1988). A common thread to these critiques was the observation that the
growth trends implied by the vertical scales under examination were counterintu-
itive. Not only did the score scales appear to “shrink” in a manner that had never
been observed previously, they did so by a dramatic order of magnitude. Given that
existing theory (Hoover cited Anastasi, 1958) and intuition supported the opposite
trend, this led to a prevailing sentiment that the growth trends being observed were
at least in part an artifact of either the data collection design, the use of IRT, or both.

In a series of publications, Wendy Yen and George Burket—who had been re-
sponsible for the vertical scaling of test batteries under critique (the California Test
of Basic Skills and the California Achievement Test)—defended the use of IRT to
create the vertical scales. In Burket (1984), Yen, Burket, and Fitzpatrick (1995a,
1995b), and Yen (1986), the IRT approach was defended primarily on the grounds
that it represented an improvement over the Thurstonian approach. In Yen and Bur-
ket (1997), evidence from a simulation study was presented to argue that to the ex-
tent that the achievement construct is unidimensional and the true scale has constant
variance across grades, there is nothing inherent in the use of IRT that would lead to
scale shrinkage as an artifact. On the other hand, Yen (1985) had previously demon-
strated through simulation that a violation of the assumption of unidimensionality
could theoretically lead to scale shrinkage. Since the potential for violations of uni-
dimensionality is quite plausible for a scale spanning 12 grades, this would seem
to present a critical problem, and one would have expected scale shrinkage to be
a rule rather than an exception in subsequent vertical scales created after the early
1980s. Yet by the mid-1990s Yen and Burket (1997) had noted that the dramatic
scale shrinkage evident in early IRT-based vertical scalings was no longer evident in
the later editions of these tests, which showed “minimal scale shrinkage or modest
scale expansion, depending on the subtest” (Yen & Burket, 1997, p. 307). A similar
finding was reported in a study by Williams, Pommerich, and Thissen (1998).

To date, no satisfactory explanation has been given regarding the anomalous
growth trends found on the tests that precipitated Hoover’s critique in 1984. In hind-
sight, a remarkable aspect of the defense of vertical scaling offered by Yen and Bur-
ket in their publications was that at no point did they seem interested in arguing that
the approach produces a scale with equal-interval properties, even though this was
the proposition at the crux of the critiques written by Hoover (1984a), Phillips and
Clarizio (1988), and Clemans (1993). For example, while Yen et al. (1995a, 1995b)
responded quite forcefully to many of the specific elements of the Clemans critique,
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at no point did they respond to the central issue he had raised: when and under what
conditions does a vertical scale have interval properties? And if it has only ordinal
but no interval properties, how is it useful?

What Is Measurement?

In order to resolve whether it is possible to measure growth in student ability with
vertical scales that possess equal-interval properties, we can begin by revisiting (and
slightly reconceptualizing) a framework established by Michell (1986) in which dis-
tinctions are drawn between what it means to measure something. Michell focused on
three theories of measurement he referred to as operationalism, representationalism,
and classicism. To this mix I will add instrumentalism. When motivated by a be-
lief in operationalism or instrumentalism, the notion of measurement in education is
best viewed as metaphorical. When motivated by classicism, the notion of measure-
ment in education can be viewed as the act of distinguishing quantity from quality.
I will refer to the operationalist and instrumentalist perspectives as “metaphorical”
conceptions of measurement. A key distinguishing feature is that under metaphori-
cal conceptions of measurement, the assumption that a scale has interval properties
cannot be directly falsified; under the classical conception, it can.

Metaphorical Conceptions of Measurement

Operationalism typically is attributed to the writing of Bridgman (1927) and is
summarized by the slogan “In general, we mean by any concept nothing more than
a set of operations; the concept is synonymous with the corresponding set of op-
erations. (p. 5)” In this sense, once numbers have been attached to objects and the
resulting variable has been named, it has been “operationalized”—that is, it has been
operationally measured. From an operational school of thought, test scores are mea-
surements “because they are reasonably consistent numerical assignments that result
from a precisely specified operation” (Michell, 1986, p. 404).

Under instrumentalism (Duhem, 1954), a test score is a “measure” to the extent
that it is useful, where utility in this context depends upon whether a measure can
successfully classify and predict observational statements (Niiniluoto, 2011). One of
the best known modern-day examples of the instrumentalist school of thought can
be found in the writings of Stephen Toulmin (1958), work that has had considerable
influence on contributions to test validation theory (Kane, 2006). The early influence
of instrumentalist thinking on psychometrics is apparent in the opening chapter of
Lord & Novick’s Statistical Theories of Mental Test Scores:

At various times in this book, however, we shall treat a measurement as having in-
terval scale properties, although it is clear that the measurement procedure and the
theory underlying it yield only a nominal or, at best, an ordinal scale . . . . from a
pragmatic point of view, the only meaningful evaluation of this procedure is one
based on an evaluation of the usefulness of the resulting scale [emphasis added].

If we construct a test score by counting up correct responses (zero-one scoring)
and treating the resulting scale scores as having interval properties, the procedure
may or may not produce a good predictor of some criterion. To the extent that this
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scaling produces a good empirical predictor the stipulated interval scaling is justi-
fied [emphasis added]. (1968, pp. 21–22)

The conception of measurement as a metaphor calls to mind a psychometrician
who is agnostic as to the existence and structure of one or more latent variables that
may or may not underlie a test-taker’s sum score as long as the resulting score or
score transformation can be shown to be the result of a thoughtful operationalization
(e.g., follow from the process of sampling and coding items systematically) and/or
useful (e.g., predictive of some external criterion).

The Representational and Classical Conceptions of Measurement

In representational theory, measurement occurs through the process of mapping
empirically observable, qualitative phenomena into numerical relationships. The
central principle is that measurement concerns the numerical representation of em-
pirical facts. According to Michell, the theory can be traced most directly back to
the writings of Stevens and Suppes (Stevens, 1946, 1951; Suppes, 1951; Suppes &
Zinnes, 1963). It was Stevens who provided the definition of measurement that has
become most ubiquitous in the social sciences: “Measurement is the assignment of
numerals to objects or events according to rule” (Michell, 1999; Stevens, 1946). It
is interesting to note that this definition, when broadly interpreted (which appears
to have been Stevens’s intent) and taken out of historical context, is consistent with
the meaning of measurement under operationalism. What most distinguishes rep-
resentationalism from operationalism are subsequent efforts to undergird Stevens’s
definition by formalizing the necessary and sufficient conditions (i.e., axioms) that
would need to hold before it would be deemed sensible to “assign” numbers to any
given empirical relational system (cf., Krantz, Luce, Suppes, & Tversky, 1971). De-
pending upon which axioms could be satisfied, the resulting numerical relational
system could be distinguished with respect to the ratio, interval, ordinal or nomi-
nal categories and corresponding admissible statistical procedures that Stevens had
popularized.2

The classical theory of measurement predates representationalism and can be
traced back to ideas held by Aristotle and Euclid. Under the classical theory, mea-
surement is nothing more or less than the assessment of quantity. As defined by
Michell, “a quantity is a class of properties (such as length) or a class of relations
(such as temporal durations), the elements of which stand in additive relations to
one another rich enough to sustain numerical ratios” (Michell, 1999, p. 26). There-
fore, measurement is the discovery or estimation of the ratio of a magnitude of a
quantity to a unit of the same quantity. For the classicist, measurement proceeds
by hypothesizing the existence of an attribute of some object and then seeking to
test the hypothesis that the attribute is quantitative through experimentation. Unlike
representational theory, there is no “assigning” of numerals to objects; objects with
quantitative attributes are assumed to exist, and it is the objective of the measurer
to discover them. Examples of research on measurement in psychology consistent
with the classical perspective would include Thurstone (1927), Coombs (1950), and
Rasch (1960). From the classical perspective, there is no such thing as an ordinal (or
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nominal) “measurement” because an ordinal scale is not quantitative, and the process
of measurement is all about going from the qualitative to the quantitative.

Representationalism and classicism are distinct traditions with different philo-
sophical perspectives on measurement. Classicists usually are wedded to scientific
realism, while representationalists tend to be skeptical of any meta-physical reason-
ing about latent variables. They are grouped together here only because for both
camps there is an empirical method available to evaluate whether data have a struc-
ture that would support an interval over an ordinal scaling. This empirical method is
the theory of conjoint measurement,3 which I describe in more detail shortly.

Contrasting Different Conceptualizations of Measurement to Growth
Interpretations From Contemporary Vertical Scales

The advent of the No Child Left Behind legislation of 2002 and the subsequent
expansion of state-level testing across Grades 3 through 8 has led to a mushrooming
of state-specific vertical scales in math and reading. Nationally, the two predominant
test contractors that have been responsible for the development of state-specific ver-
tical scales have been CTB-McGraw Hill (CTB) and Harcourt Educational Measure-
ment (Harcourt).4 This is in large part because CTB and Harcourt have had a long-
standing history as developers of vertical scales. Their respective commercial test
batteries, the TerraNova and the Stanford Achievement Test, were created using na-
tionally representative samples of American students and a common item nonequiv-
alent groups linking design (Briggs & Weeks, 2009; Kolen & Brennan, 2004). A ma-
jority of states with vertical scales in math and reading have established those scales
by contracting with CTB or Harcourt and then embedding TerraNova or Stanford
Achievement Test items into their state-specific tests. The parameters for these items
are treated as known, they are calibrated together with unique items in an IRT model,
and this, in principle, serves to anchor the scale of the state tests to the underlying
vertical scale from which the embedded items originated.

For each of 16 states with a vertical scale during the 2007–08 school year, an
implied growth trajectory in reading5 can be formed by comparing mean scale scores
across grades 3 through 8. An effect size metric sometimes is used to depict grade-
to-grade gains as a proportion of the average SD of the scale scores across adjacent
grades. In the present context, expressing grade to grade gains as effect sizes makes
it possible to compare patterns of growth across states in the same plot, as can be
seen in Figure 2.

The large dark circles in Figure 2 represent the average effect size across states
and the bars extending from these circles represent the SD across states. The light
dots and lines represent the effect sizes and implied growth trajectories for each of
the 16 states. What stands out in this figure is the considerable variability in growth
patterns within and across grade pairs. Mean growth in student performance for any
pair of adjacent grades ranges from a low of .30 SDs (Grades 3 to 4) to a high of .65
SDs (Grades 5 to 6).

From the metaphorical perspective, the variability observed in Figure 2 should
come as little surprise because each test, in principle, is a uniquely operational or
instrumental measure of “reading ability.” Grade-to-grade growth has meaning only
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Figure 2. Reading growth trends in the effect size metric.

as a function of the average differences in the common items answered correctly for
students in the lower and upper grades of any pair of adjacent grades. The magnitude
of growth that is observed will depend largely upon the developmental and instruc-
tional sensitivity of the common items that have been selected. So unless all states
were using the same common items, there would be no reason to expect the pat-
terns of growth for students from two different states to look the same—even if the
students in both states had comparable demographic backgrounds and had received
comparable instruction from a common curriculum. To complicate matters further,
if the vertical scales have not been maintained from year to year using the same hor-
izontal equating design (i.e., common items linking scores across the same grades in
different years), this also would lead to further differences in growth interpretations
across the grades of the vertical scale.

In contrast, recall that from a classical perspective measurement is the process of
turning qualitative observation into a quantitative relationship via testable hypothe-
ses. In this sense, the results shown in Figure 2 are notable and somewhat surprising
because each state’s test should be interpreted as a measure of the same latent psy-
chological attribute (“reading ability”), an attribute that has been hypothesized to be
quantitative. If the hypothesis were true and each state’s assessment system could
be said to have produced measures of reading ability, then the observed variability
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across grades and states would be something of scientific interest in the same way
that variability in effect sizes is a key source of interest in the meta-analytic litera-
ture. The next step would be to look for substantive factors that would explain why
students’ growth in reading comprehension from Grades 3 to 4 in one state is, on
average, twice as much as the growth observed for students in another state. A com-
peting or complementary reaction would be to question whether the quantity hypoth-
esis for the psychological attribute of reading ability is plausible. If it can be rejected
empirically, it would be no more sensible to interpret the differences in growth mag-
nitudes for any pair of grades across states than it would be to interpret the magnitude
of mean differences in height between males and females using stick B in Figure 1.

In making this contrast between the metaphorical and classical orientations to
measurement, I will not argue that one is superior to the other in terms of onto-
logical coherence.6 What I do wish to argue is that the metaphorical conceptual-
izations do not appear to lend themselves to empirical validation in the context of
vertical scaling. If the claim of interest is that test scores placed onto a vertical scale
can be used to measure growth, then the warrant for this claim is that the scale has
interval properties. I can see no way to establish a backing for this warrant when
the act of educational measurement is metaphorical. When adopting this conceptu-
alization, distinctions between interval and ordinal scales are either meaningless a
priori (operationalism) or meaningless in the absence of some external criterion for
utility (instrumentalism). Since there is, to my knowledge, no such criterion avail-
able for growth in student achievement, if a test maker were to establish two differ-
ent vertical scales for the same state using, for example, two different IRT models,
there would be no way to evaluate if one approach led to growth interpretations that
were more valid than the other.7 This strikes me as unacceptable science. The same
problem does not emerge when a vertical scale has been established in a manner
consistent with a classical conceptualization of measurement, as I illustrate in what
follows.

Using the Axioms of Additive Conjoint Measurement to Evaluate Scale
Properties

Arguably the most important contribution of measurement theorists in the repre-
sentational tradition has been to provide a framework whereby the hypothesis that
a variable has quantitative structure can be falsified—even if that variable is latent.
This framework is known collectively as the theory of conjoint measurement, and
the simplest version of it—additive conjoint measurement—was first introduced by
Luce and Tukey (1964).8 In the most general sense, conjoint additivity implies that
two variables can be scaled such that their additive combination forms a third vari-
able. A famous example of this is the relationship between force (f), mass (m) and
acceleration (a) in Newton’s second law of motion (Andrich, 1988; Krantz et al.,
1971; Michell, 1999). After taking logarithms, A = F + M where A = log(a), F
= log(f) and M = −log(m). The remarkable result of additive conjoint measure-
ment is that even if distinctions between different values of force and mass could
be made only in terms of order, if the values of acceleration that resulted from their
combination could be shown to follow certain rules then it could be proven that all
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Y
y1 y2 y3

X
x1 z11 z12 z13

x2 z21 z22 z23

x3 z31 z32 z33

Figure 3. Hypothetical conjoint matrix.

three variables have quantitative structure. Although the mathematical proofs of ad-
ditive conjoint measurement can be hard to follow, the key conceptual features of the
theory and its usefulness in testing hypotheses about the quantitative structure of a
latent variable are easy to illustrate. I do this first in the abstract and then follow this
with a specific example pulled from Angoff’s (1971) discussion of the difficulties of
establishing that a scale has equal-interval properties.

Testing the Quantity Hypothesis

Assume the existence of two variables, X and Y. For each variable respectively
there are J and K observed values, {x1, x2, . . . , xj, . . . , xJ} and {y1, y2, . . . , yk, . . . ,
yK}. While it is not necessary to assume a priori that the values of each variable are
ordered, we will do so here to simplify the illustration. Given this, we can say that
x j ≤ x j+1 ≤ x j+2 ≤ · · · ≤ x j and similarly that yk ≤ yk+1 ≤ yk+2 ≤ · · · ≤ yK . The
theory of additive conjoint measurement is premised upon a situation in which a
third variable, Z, can be expressed as a function of X and Y such that Z = f (X, Y ).
In other words, values of Z are observed empirically as a consequence of different
combinations of X and Y. When it can be demonstrated that the order of relation-
ships among values of Z satisfy certain axioms, it follows that X, Y, and Z have been
conjointly established as quantitative variables, with f as a noninteractive function
(e.g., Z = X + Y ). The key axioms of additive conjoint measurement are cancella-
tion, solvability and the Archimedian condition. The axioms are easiest to visualize
when presenting a subset of a conjoint system for two variables X and Y as a 3 by 3
matrix as is shown in Figure 3.

The solvability axiom essentially says that there must be enough combinations of
X and Y to produce any desired value of Z. The Archimedean condition ensures that
the difference between two values of X or Y never will be infinitely larger than any
other two values of X or Y. While neither solvability nor the Archimedean condi-
tion can be falsified directly, Michell (1990) has argued that evidence in support of
them can be established indirectly to the extent that the cancellation axioms can be
satisfied. I describe this process in detail to give the reader some sense for what is
required to evaluate the cancellation axioms. For any n × n conjoint matrix, there
will be n − 1 cancellation conditions that can be tested. In the case of the 3 by 3
matrix shown in Figure 3 there are two: single and double cancellation. Single can-
cellation (sometimes referred to as the independence assumption) asserts that the
ordering of the values of Z (cells in the matrix) remains the same when the values of
X (the rows) are changed and the value of Y (the columns) is fixed, and vice versa.
If single cancellation can be established, the main diagonal of the matrix shown
in Figure 3 must have an ordering such that z33 > z22 > z11. The axiom of double
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cancellation is used to establish the relative orderings of the off-diagonal cells. Under
double cancellation,

if z12 ≥ z21

and z23 ≥ z32

then z13 ≥ z31.

The double cancellation hypothesis is illustrated by the arrows in Figure 3, where
the two solid arrows represent the antecedent conditions and the dashed arrow rep-
resents the consequence that must follow. The consequence of double cancellation
comes from the fact that if the variables Z, X, and Y form a conjoint system, then it
must be the case that we can express Z as an additive combination of X and Y, such
that z jk = x j + yk . Given this, it follows that in the conditional relationship above
the antecedents can be re-expressed as

x1 + y2 ≥ x2 + y1 (1)

and

x2 + y3 ≥ x3 + y2. (2)

Summing (1) and (2) produces

x1 + y2 + x2 + y3 ≥ x2 + y1 + x3 + y2. (3)

Since x2 and y2 are common to both sides of (3), they cancel (hence the term “dou-
ble” cancellation). Recalling again that z jk = x j + yk , and given that the antecedents
in (1) and (2) hold, it follows that (3) reduces to z13 ≥ z31.

From Theory to Practice

Now we consider a specific example of how the cancellation axioms of additive
conjoint measurement could be used to test the hypothesis that a latent variable has
quantitative structure with equal-interval interpretations. Angoff (1971) pointed to
the equivocal nature of such an endeavor when he wrote “ . . . there is no assurance
that equal differences between scores in different regions on the scale of a psycho-
logical test represent equal differences of ability” (p. 509). To illustrate the problem,
Angoff used an example that had been shared with him informally by Frederic Lord,
in which the latent attribute in question was typing ability. Lord had imagined a sce-
nario in which typing ability was operationally measured by the number of words a
person could type correctly in a minute. Angoff noted that one might be tempted to
conclude that the difference between two people able to type 20 and 30 words per
minute, respectively, is equivalent to the difference between two typists able to type
50 and 60 words per minute, respectively. He then pointed out that such a conclusion
would be equivocal because the amount of practice required for a typist to improve
from 50 to 60 words per minute surely would be an order of magnitude higher than
the amount of practice required to improve from 20 to 30 words per minute.

Interestingly, in the scenario described by Angoff and Lord the hypothesis that
typing ability has a quantitative structure could in fact be tested under the theory
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Difficulty of task
40 words 30 words 20 words

Weeks of 
practice

1 .00 .10 .60
2 .10 .50 .80
3 .15 .65 .95

Figure 4. Evaluating the Angoff-Lord typing example
by testing cancellation axioms.

of conjoint additivity. This can be shown by re-expressing Figure 3 in terms of the
Angoff/Lord typing scenario. Let the variable X now denote the number of weeks
of typing practice to which a student has been exposed. Let the variable Y denote
a task consisting of some number of words a student is given to type in a minute.
Consider the conjoint matrix shown in Figure 4 that results from an experiment in
which three levels of X (1, 2, and 3 weeks) are crossed with three levels of Y (20, 30,
and 40 words). In other words, in this experiment a sample of N students is assigned
randomly to one of nine possible cells—some students practice typing for 1 week
and then are given a list of 30 words to type correctly; others practice for 2 weeks
and are given a list of 20 words to type correctly, etc. The values observed in each
cell would represent the proportion of students in each condition that successfully
completed the typing task. If typing ability is to be interpreted as a quantitative vari-
able measured conjointly as an additive function of X and Y, a necessary condition
is that it must be the case that the single and double cancellation axioms of conjoint
measurement hold when the results of this experiment are evaluated. In the fictitious
results shown in Figure 4, both single and double cancellation axioms would hold,
providing provisional support for the hypothesis that typing ability can be measured
quantitatively.

It has been well established that the typical logistic formulation of the Rasch
model9 log[ P(X pi =1)

P(X pi =0) ] = θp − δi is analogous to the sort of situation presented in the
theory of additive conjoint measurement because it involves the linear and nonin-
teractive combination of person “ability” (i.e., the rows in Figure 4) and item “dif-
ficulty” (i.e., the columns in Figure 4) to predict the log odds of a correct response
(Brogden, 1977; Michell, 2008c; Perline, Wright, & Wainer, 1979; Wright, 1997).
The left side of the Rasch model equation above represents the log odds (“logit”) of
a correct item response and the right side of the equation consists of parameters for a
person’s ability (θ, indexed by the subscript p for each respondent) and the item’s dif-
ficulty (δ indexed by the subscript i for each test item). It is in this sense that one can
attempt to justify the logit scale that results from the application of the Rasch model
as possessing interval properties—if the model can be shown to adequately fit the
data at hand. As Ballou (2009, pp. 358–360) has noted, under conjoint measurement,
the interval property of a scale comes from the ability to express differences between
any two levels of one variable (i.e., Y) in terms of a designated reference interval
(i.e., a standard unit) on the second variable (i.e., X). So in the Rasch model, the per-
son ability scale can be given meaning with respect to a defined interval of the item
difficulty scale, and vice versa. It is important to recognize that, in the ideal scenario,
the person ability scale does not have equal-interval properties because of some dis-
tributional assumption but through its relationship to the item difficulty scale.
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An Example of the Classical Approach in the Context of an
Existing Vertical Scale

The Lexile Theory and Scale

The research that has been conducted on the Lexile test battery for reading com-
prehension demonstrates that it is possible to create vertically scaled tests with fal-
sifiable scale properties. According to the Lexile theory, the ability of a student to
comprehend the meaning of a reading passage is a function of two variables: (1) syn-
tactic complexity, estimated by the ratio of the total number of words to the number
of sentences; and (2) semantic complexity, estimated by the average frequency that
the words in the passage are used in a text corpus of over 5 million words sampled
from a broad range of school materials (Carroll corpus; Carroll, Davies, & Richman,
1971). Stenner and colleagues have fine-tuned this theory over many years of em-
pirical investigation (Stenner, Burdick, Sanford, & Burdick, 2006; Stenner & Stone,
2010). Much of this research draws upon on the concept of item difficulty modeling
(cf. Fischer, 1983; Gorin & Embretson, 2006; Stenner, Smith, & Burdick, (1983)),
which requires a test developer to hypothesize, in advance, the manipulable vari-
ables that would make a student more or less likely to answer an item correctly.
In this particular context, the items under investigation are known as cloze items,
so-called because they consist of a series of questions embedded within a reading
passage. At different junctures of the passage a word from a sentence is omitted
and the reader is prompted to choose between four options that would “cloze” the
sentence.

In an initial exploratory stage of research, Stenner and colleagues (1983) found
empirical examples where cloze items taken from the Peabody Individual Achieve-
ment Test had been administered and then calibrated with the Rasch model. Item
difficulty was regressed on a collection of up to 50 variables that, along with sen-
tence length and word complexity, consisted of factors such as parts of speech, con-
tent classifications of words, number of syllables, etc. Stenner (1996) reports that
the estimates of syntactic and semantic complexity were the strongest predictors, by
themselves explaining up to 85% of the observed variability in item difficulty.

On the basis of such studies, the Lexile developers established a prediction equa-
tion that makes it possible to predict the difficulty of a cloze item before it has been
administered. The equation takes the form δi = a + bLMSL − cMLWF, where δi is
the “theoretical logit” for item difficulty, LMSL is the log of mean sentence length,
MLWF is the mean of the log word frequency, and the parameters a, b, and c are
treated as known constants, having been previously estimated. All else being equal,
a cloze item is expected to be more difficult (large positive value) if it is comprised
of longer sentences and words that students encounter infrequently in their everyday
reading. To the extent that an equation such as the one above can accurately predict
item difficulty, it dramatically simplifies the process of creating a vertical score scale
because it is no longer necessary to administer common items to students at different
grade levels in order to estimate the relevant linking constants.

Because item difficulty parameters are known in advance, it is straightforward to
estimate a student’s reading comprehension level using the Rasch model with logit
difficulty values known (using estimates from the prediction equation) and ability
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parameters unknown. To make ability estimates interpretable in a criterion-
referenced sense, logit values are transformed into “Lexiles” as a function of two an-
chor points: the text difficulty from seven basal primers (lower anchor, typical of first
grade text) and text from an encyclopedia, typical of 12th grade text. A standard mea-
surement unit—a single Lexile—is defined as 1/1000 of the difference in difficulty
between these two anchor points. So if a student shows growth of 100 Lexiles from
grade 1 to grade 2, this magnitude has an unambiguous criterion-referenced meaning.

Testing the Quantity Hypothesis

Does reading comprehension have a quantitative structure? If it does, then a gain
of 100 Lexiles from first grade to second grade will have the same meaning as a
100-Lexile gain from fifth grade to sixth grade: the Lexile scale has an equal-interval
property. Stenner (1996) suggests this is the case when he writes: “Measurements
for persons and text are now reportable in Lexiles, which are similar to the degree
calibrations on a thermometer.” There are at least two reasons for being skeptical
of such a claim on the basis of the evidence described above. First, we may argue
that the theory behind the Lexile equation is flawed. For example, Stenner (1996)
found that the equation did not predict well for reading passages consisting of poetry
or non-continuous prose. This limits the generalization of the Lexile scale. Others
have argued that reading comprehension is far too complex a construct to quantify
in the simple manner implied by the Lexile equation. Second, establishing a linear
equation that is strongly predictive of item difficulty does not necessarily imply that
a quantity hypothesis can be supported. To do so, the hypothesis would need to be
put to a formal test.

Kyngdon (2008, 2011) demonstrated how the axioms of conjoint measurement
could be used to perform such a test. Kyngdon conducted a small-scale em-
pirical evaluation of Lexile test data using a probabilistic approach to checking
the cancellation axioms of additive conjoint measurement initially proposed by
Karabatsos (2001). In doing so, Kyngdon failed to reject the hypothesis that the dif-
ficulty of reading items (as hypothesized by the Lexile theory) and the ability of
persons (represented by total number of items answered correctly) satisfy an addi-
tive relationship that make them jointly quantitative rather than qualitative. Kyngdon
also demonstrated how IRT models with a more complex parameterization than the
Rasch model could be expressed and tested with respect to extensions of additive
conjoint measurement (e.g., polynomial conjoint measurement).

One criticism of Kyngdon’s evaluation of the Lexile is that it involved only a
single submatrix that had been drawn from the larger available conjoint data ma-
trix of 39 score groups (rows) by 51 items (columns). As part of a more recent study,
Domingue (2012; Domingue, in press) created and implemented the R package Con-
jointChecks to repeatedly sample 3 × 3 submatrices from a full conjoint matrix and
check them against the cancellation axioms of additive conjoint measurement. To
do this, Domingue simulated data that would satisfy the axioms probabilistically.
He then kept track of the (small) proportion of cells found to violate the axioms in
this simulated scenario for use as a normative baseline. Next, using the same Lexile
data that was the basis for Kyngdon’s study (a 39 × 51 data matrix), he performed
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checks of the axioms with random samples of 16,800 3 × 3 submatrices. Although
Domingue was able to replicate Kyngdon’s empirical finding in support of the Lexile
when using the same single submatrix, the proportion of cells found to violate the
cancellation axioms across the repeated samples of 3 × 3 submatrices were 10 times
larger than the proportion detected under the baseline condition (i.e., data had been
simulated to fit the axioms). Based on these findings it appears premature to con-
clude that the latent attribute of reading comprehension—at least as conceptualized
with Lexile theory—has a quantitative structure. Knowing that the Lexile equation
is highly predictive of item difficulty is only a boon if the grouping of items by diffi-
culty and respondents by total scores can be shown to adequately satisfy the axioms
of additive conjoint measurement. Although the Lexile scale appears to have consid-
erable utility as a tool for generating criterion-referenced reading assignments with
possible diagnostic advantages, empirical evidence suggests that changes in magni-
tude along its vertical scale cannot be given an equal-interval interpretation.10

A major takeaway from this example is that, in contrast to more pessimistic asser-
tions (Ballou, 2009; Cliff, 1992; Yen, 1986; Zwick, 1992), testing an equal-interval
hypothesis is not an impossible or an insurmountably difficult task. The theory of
conjoint measurement provides the means by which such hypotheses could be inves-
tigated empirically. The approach first suggested by Karabatsos and more recently
expanded upon by Domingue (2012) adjusts the axiomatic approach such that it
takes measurement error into account, and the R package ConjointChecks provides
researchers with an open source computational approach for implementing additive
conjoint checks that can be readily applied to any matrix of item responses.

Limitations

One obvious challenge with the classical approach sketched out above is that it re-
quires test developers to establish hypotheses about manipulable variables that cause
items to be harder or easier to answer and test takers to be more or less able to re-
spond correctly to them. The Lexile is one of the only large-scale assessments of
which I am aware in which at least an item-based hypothesis (reading comprehen-
sion as a function of sentence length and word complexity) has been made explicit,
and a research agenda has been undertaken to validate the larger assumption of in-
terval scale properties. Unfortunately, there are no current examples along the lines
of the Angoff/Lord illustration presented earlier where the conjoint hypothesis is
premised upon an external manipulation of both item and person factors. Further-
more, the broader the domain of interest, the more difficult it will be to make tar-
geted and testable hypotheses. This would suggest that vertical scales could only be
plausibly supported for more narrowly defined latent variables. In other words, it is
more conceivable that one might be able to measure growth in a student’s ability to
add fractions rather than the more broadly defined “ability” to solve mathematical
problems.

A second challenge when taking the classical approach is to establish criteria for
how close is close enough. Just as the interval properties of a ruler begin to break
down as the standard unit gets smaller and smaller relative to the objects of measure-
ment, the same will be true of the measure of a latent variable as the differences in
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difficulty between items get smaller and smaller. It may be the case that scales can be
created for which the equal-interval hypothesis holds—but only for a coarse level of
granularity. For example, imagining a score scale ranging from 200 to 800 in incre-
ments of 10, perhaps the theory of conjoint measurement could be used to show that
a 60-point change from 300 to 360 has the same meaning as the change from 700
to 760 but that measurement error prevents a similar assertion about score changes
at various points on the scale that are 50 points or fewer. In any case, while there is
surely no easy solution to the question of how close is close enough, at least the ax-
ioms of additive conjoint measurement provide a criterion against which this can be
evaluated. Hence it would be possible to determine, when faced with two competing
vertical scales, that one is closer to the interval ideal than the other.

Discussion

Once some philosophical distinctions between different theories of what it means
to measure are explicated, it becomes easier to make sense of the seemingly con-
tradictory statements that have been made about the use of vertical scales to mea-
sure growth. For example, one can infer that to Yen and Burkett, because measure-
ment has only a metaphorical meaning, the use of an IRT-based approach could be
justified by arguing that it represented a model that is statistically superior to any
other alternative. The resulting scales were no more or less equal-interval than any
other score scales because such properties can never be internally justified. On
the other hand, one can infer that to Hoover (1984a), Clemans (1993), and Phillips
and Clarizio (1988), the driving motivation for creating a vertical score scale using
Thurstonian or IRT methods was to measure growth in a classical sense. Given this
assumption, it is no surprise to observe their consternation over empirical findings
that raised doubts about the plausibility of equal-interval scale properties. A funda-
mental problem with much of the research literature on vertical scaling is that it is
largely premised on a metaphorical conception of measurement yet this communi-
cated to test users through reference to a classical conception (cf. Burket, 1984, p.
15). A coherent framework for validating a vertical scale can be established only if
this contradiction is well understood. If the distinction between ordinal and inter-
val is to be regarded as meaningless, then the consumers of psychometric products
should be placed under no illusions to the contrary.

There are some possible advantages to embracing the classical definition of mea-
surement as a basis for vertical scale creation and validation, and this was illustrated
with the research that has gone into the development of the Lexile framework. In the
classical approach, one aspires to measure growth relative to a standard unit with a
criterion-referenced meaning. There is a great need and demand for vertically scaled
tests because there is a great desire to make absolute statements about differences
in the quantity of what students have learned. If this can be accomplished, it greatly
simplifies the statistical task of modeling growth over time because results can be
communicated in terms of linear or nonlinear trajectories; this meshes nicely with the
intuitive notion parents, teachers and policymakers have when they speak of growth.
If it cannot be accomplished, then different statistical methods would need to be used
to communicate inferences about growth.
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The classical approach requires one to put forward testable and falsifiable hypothe-
ses about the design factors that make items easier or harder to answer correctly and
students more or less able. Even if such assumptions could not be supported when
scrutinized against the axioms of conjoint measurement (as was shown to be the case
for the Lexile scale), it is hard to imagine that a process that thoughtfully invoked
the principles of experimental design in this manner would not lead to stronger and
more defensible testing programs. It is in this sense that there may be some com-
mon ground to be found in thoughtful renditions of the classical and metaphorical
approaches to measurement. For example, in presenting measurement as a “narrative
frame” for model-based reasoning and in his applications of “evidence centered de-
sign,” Mislevy has emphasized the need for assessments that leverage advances in
cognitive psychology to form “student models” and “task models” (Mislevy, 2006,
2008). In so doing he focuses attention on some of the same sort of a priori hypoth-
esizing that is at the heart of the classically oriented investigation illustrated above.
To the metaphorical measurer, the central goal of test development is to elicit ac-
tionable evidence about what students know and can do. One suspects that in many
instances the classical measurer would develop tests that would elicit the same sort
of evidence.

However, a context where this common ground breaks down is when tests are be-
ing designed for the specific use of measuring growth along a vertical scale. When
taking the classical approach, there is a clear program of research that could be under-
taken to validate this use. The nature of a competing program of validation research
under the metaphorical approach has not been explicated and remains an open ques-
tion. One possibility would be to take seriously the program of research implied
by one of the founding fathers of the philosophy of pragmatism, William James. In
describing the pragmatic method, James wrote:

The pragmatic method in such cases is to try to interpret each notion by tracing
its respective practical consequences. What difference would it practically make to
anyone if this notion rather than that notion where true? If no practical difference
whatever can be traced, then the alternatives mean practically the same thing, and
all dispute is idle. Whenever a dispute is serious, we ought to be able to show some
practical difference that must follow from one side or the other’s being right. (James,
1907/2011)

From a pragmatic perspective, until one can demonstrate empirically that a vio-
lation of the quantity assumption (i.e., the “pathology” of psychometricians, to use
Michell’s language) leads to significant practical consequences—for example, the
estimated value-added effects of a large number of teachers or schools goes from
positive to negative or from large to small—there will be little incentive to invest
the time and effort into a research agenda focused on the discovery of psychological
attributes that are measurable in a classical sense. In applying the pragmatic method
to validate growth interpretation from a vertical scale, the challenge would be to
demonstrate that there would be no practical differences in decisions based on these
interpretations if the scale were in fact only ordinal and not interval.

In social science research in general and educational research in particular, there
is a tendency to use the term “growth” so loosely that almost any procedure whereby
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one number is compared to another would qualify. In the same vein, measurement,
when it is defined at all, typically is cast as some version of “the assignment of nu-
merals of objects according to rule,” a definition that rules out nothing but the random
assignment of numbers to objects as a measurement procedure. The measurement of
growth may be understood to be metaphorical by most psychometricians, yet the best
metaphors are ones that can be tethered firmly to reality. As long as the term “mea-
suring growth” remains a Rorschach test, some will view the resulting picture as a
work of art and others will view it as the result of an underlying pathology in need
of treatment.

Notes
1Such scales also are commonly described as “developmental” score scales. I use

the more neutral term “vertical” throughout.
2This motivation is evident in the first chapter of the Foundations of Measurement

series when Krantz et al. write: “Stevens has not provided any argument that the
procedure of magnitude estimation can be axiomatized so as to result in a ratio-
scale representation; he has neither described the empirical relational structure, the
numerical relational structure, nor the axioms which permit the construction of a
homomorphism” (1971, p. 11).

3In my presentation of additive conjoint measurement I draw upon the classically
oriented presentation of the approach found in Michell (1990). That is, I assume that
latent attributes and numbers exist a priori and that the purpose of measurement is
to discover and describe quantitative structure numerically. For a primer cast in the
language of representationalism, see Borsboom (2005) and Kyngdon (2008). The
most complete presentation is found in Krantz et al. (1971). While the theory of
conjoint measurement was formulated within a representational framework, Michell
(1990, 1999) has shown that application of the axioms—in particular, cancellation—
also is compatible with the classical theory of measurement. In this sense, while the
representational and classical theories are philosophically incompatible, the theory
of conjoint measurement serves as a bridge between the two.

4In 2008, Pearson Educational Measurement acquired Harcourt. So states that had
previously contracted with Harcourt became Pearson clients. However, the vertical
scale scores that were the basis for the results that follow derive from technical re-
ports that were written by Harcourt staff, so I reference Harcourt rather than Pearson.

5Similar plots have been produced for math vertical scales but have been omitted
due to space constraints. For details, see Dadey and Briggs (2012).

6For some insight on this issue, see Borsboom, 2005; Dooremalen & Borsboom,
2009; Michell, 2008b; Mislevy, 2006, 2008.

7Some might be tempted to argue that this could be settled by choosing the model
with the best fit to the data for any given grade-specific test (cf., Skaggs & Lissitz,
1986). If this were a criterion for tests comprised of dichotomously scored items, an
IRT model such as the 3PLM usually would fit the data better than the Rasch model.
But this in itself does nothing to establish whether linking multiple tests vertically
leads to a scale with interval properties. In fact, the superior within-grade fit of the
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3PLM relative to the Rasch model may well constitute evidence against an interval
scale interpretation.

8Although as an anonymous reviewer of this manuscript pointed out, the seeds for
this theory already were visible in an even earlier paper by Cliff (1959).

9In particular, Rasch’s (1960) emphasis on the concept of specific objectivity has
a clear parallel with the necessary condition of single cancellation in the theory of
conjoint measurement.

10One notable source of indeterminacy here is the use of reading passages with
multiple-choice cloze items to elicit evidence of reading comprehension. The multi-
ple response options may lead to unanticipated guessing; the nesting of items within
passages may increase the dimensionality of the assessment. Would different instru-
mentation lead to a different conclusion about the structure of the hypothesized latent
variable? More research would be necessary to find out.
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